CO₂ Sequestration, Fault Stability and Seal Integrity at Teapot Dome, Wyoming

Laura Chiaramonte¹, Mark Zoback¹, Julio Friedmann² and Vicki Stamp³

¹Stanford University, ²LLNL, ³RMOTC

Fifth Annual Conference on Carbon Capture & Sequestration

Understanding leakage risk and ability to predict it are key steps for CO₂ sequestration

(Courtesy of A. Lucier)

Leakage in Oil & Gas Fields

Case Study Location – CO₂ - EOR Pilot

Teapot Dome Oilfield, WY

Teapot Dome - Geology

- Basement-cored anticline
- West verging fault-propagation fold

McCutcheon (2003)

(courtesy J. Friedmann)

 Reservoirs compartmentalized by oblique strike-slip to normal faults

(Friedmann et al., 2004)

Trap

Time structure map Tensleep Fm.

Structural crest → ~ 5320' (1620 m)

3-way closure bounded by S1 fault

Oil-contact area ~ 1.2 km²

Reservoir

Tensleep Formation → B - Sand Interdune deposits (sandstones, evaporites, etc.)

- Average Porosity 10 % (5 20 %)
- Average Permeability 30 mD (10 – 100 mD)

Top Seal

Paleosoil + Opeche Shale + Anhydrite (Minnekatha member)

Will CO₂ Injection Affect Seal Capacity of Bounding
 S1 Fault & Integrity of Cap Rock?

Triggering slip on pre-existing fault

Hydraulic fracturing of cap rock

Reactivated faults provide conduits for fluid migration (Wiprut & Zoback, 2001)

→Relationship between faults & present day stress field in order to understand & quantify risk of leakage

Tectonic Regimes - Geomechanical Model

Anderson Classification

Normal

Strike-Slip

Reverse

Stress Tensor

Overburden

Minimum Horizontal Stress

Tectonic Regimes - Geomechanical Model

Anderson Classification

Stress Concentration Around a Vertical Well

Drilling Induced Tensile Fractures

Breakouts

Geomechanical Characterization - Stress Tensor

$$\boldsymbol{S} = \begin{bmatrix} S_{Hmax} & 0 & 0 \\ 0 & S_{v} & 0 \\ 0 & 0 & S_{hmin} \end{bmatrix}$$

• Stress orientation → Orientation of Tensile Fractures → Formation Microresistivity Imager (FMI) log

• Vertical stress
$$\longrightarrow$$
 $S_{\nu}(z_0) = \int_0^{z_0} \rho g \, dz$ Density Logs

• Least principal stress \longrightarrow S_{hmin} magnitude

Max. horizontal stress → S_{Hmax} magnitude

Stress Modeling

Stress and Failure of Inclined Boreholes (GMI•SFIB)

Geomechanical Characterization - Stress Tensor

- Rock Strength Calculated from Logs
 - Faults Mapped from 3D Seismic

Stress Orientation from FMI logs - Tensile Fractures

Stress Orientation from FMI logs - Tensile Fractures

S_{Hmax} Orientation

$$Az = 95^{\circ} \pm 10^{\circ}$$

- Stress orientation very consistent in analyzed wells
- 276 # of observations
- Range of depths: 400 1800 mts

Present-Day Stress & S1 Fault

- Presence of Tensile Fractures
- No Breakouts Observed
- Seismic Observations

Not Favorable Oriented

→ SS/NF

Strike—Slip/Normal Faulting Environment

TD conversion → Dip Moveout (DMO) velocities

Calculating the Fault Slip Potential Using Coulomb Criterion

$$S = \begin{bmatrix} S_{Hmax} \ 0 & 0 \\ 0 & S_v & 0 \\ 0 & 0 & S_{hmin} \end{bmatrix}$$

$$t = S \hat{n}$$

$$S_n = \hat{n} \cdot t$$

$$\tau^2 = t^2 - S_n^2$$

$$\tau = \mu (S_n - P_p) \rightarrow Coulomb Criteria$$

$$P_{pc} = S_n - \tau / \mu \rightarrow critical Pp$$

$$P_{pc}$$
 - P_{ref} = Critical Pressure Perturbation

Critical Pressure Perturbation on S1 Fault

Excess Pore Pressure due to Gas Buoyancy

This corresponds to CO_2 column height of ~2500 m (den = 700 kg/m³)

At Tensleep depth → it would require ~16 MPa of excess pressure to cause fault to slip

The average structural thickness of the Tensleep Fm. is ~ 100m

- Refine Stress Model
 - Improve rock strength
 - LOT → Tensleep (mag S_{hmin}) LOT → Can-Rock
 - LOT → Cap-Rock

Avoid hydrofracturing Cap-Rock

- Refine Structural Mapping
 - Vertical Extent of S1 Fault
 - Other faults? → sub-seismic
- Improve TD Conversion

- Brian Black, Tom Anderson & Mark Milliken (RMOTC)
- Tapan Mukerji & Kyle Spikes (Stanford University)
- Tim McCutcheon

